

## First Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Engineering Mathematics - I

Time: 3 hrs.
Max. Marks: 80
Note: Answer FIVE full questions, choosing one full question from each module.

1 a. If $y=e^{-3 x} \cos ^{3} x$, find $y_{n}$.

## Module-1

b. Find the angle between the curves
$r=\frac{a}{1+\cos \theta}$ and $r=\frac{b}{1-\cos \theta}$.
(06 Marks)
(05 Marks)
c. Find the radius of curvature of the curve $x^{4}+y^{4}=2$ at the point $(1,1)$.
(05 Marks)

2 a. If $x=\tan (\log y)$, find the value of $\left(1+x^{2}\right) y_{n+1}+(2 n x-1) y_{n}+(n)(n-1) y_{n-1}$.
(06 Marks)
b. Find the Pedal equation of $\frac{2 a}{r}=1+\cos \theta$.
(05 Marks)
c. Find the radius of curvature of the curve $r^{n}=a^{n} \cos n \theta$.
(05 Marks)

## Module-2

3 a. Explain $\log (\cos x)$ about the point $x=\frac{\pi}{3}$ upto $3^{\text {rd }}$ degree terms using Taylor's series.
(06 Marks)
b. Evaluate $\operatorname{Limit}_{x \rightarrow 0}\left(\frac{\tan x}{x}\right)^{1 / x^{2}}$
(05 Marks)
c. State Euler's theorem and use it to find $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}$ when $u=\tan ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$.
(05 Marks)

## OR

4 a. Expand $\frac{\mathrm{e}^{\mathrm{x}}}{1+\mathrm{e}^{\mathrm{x}}}$ using Maclaurin's series upto and including $3^{\text {rd }}$ degree terms. (06 Marks)
b. Find $\frac{d u}{d t}$ when $u=x^{3} y^{2}+x^{2} y^{3}$ with $x=a t^{2}, y=2$ at. Use Partial derivatives. (05 Marks)
c. If $u=\frac{x_{2} x_{3}}{x_{1}}, v=\frac{x_{1} x_{3}}{x_{2}}, w=\frac{x_{1} x_{2}}{x_{3}}$, find the value of Jacobian $J\left(\frac{u, v, w}{x_{1}, x_{2}, x_{3}}\right)$. (05 Marks)

Module-3
5 a. A particle moves on the curve $x=2 t^{2}, y=t^{2}-4 t, z=3 t-5$, where $t$ is the time find the components of velocity and acceleration at time $t=1$ in the direction of $i-3 j+2 k$.
(06 Marks)
b. Find the divergence and curl of the vector $\vec{V}=(x y z) i+\left(3 x^{2} y\right) j+\left(x z^{2}-y^{2} z\right) K$ at the point (2, -1, 1).
(05 Marks)
c. A vector field is given by $\vec{A}=\left(x^{2}+x y^{2}\right) i+\left(y^{2}+x^{2} y\right)$, show that the field is irrotational and find the scalar potential.
(05 Marks)

## OR

6 a. Find grad $\phi$ when $\phi=3 x^{2} y-y^{3} z^{2}$ at the point $(1,-2,-1)$.
b. Find a for which $f=(x+3 y) i+(y-2 z) j+(x+a z) k$ is solenoidal.
(06 Marks)
c. Prove that $\operatorname{Div}($ curl $\overrightarrow{\mathrm{V}})=0$.

## Module-4

7 a. Obtain the reduction formula of $\int \sin ^{m} \mathrm{x} \cos ^{\mathrm{n}} \mathrm{x} \mathrm{dx}$.
(06 Marks)
b. Evaluate $\int_{0}^{2 a} \mathrm{x} \sqrt{2 \mathrm{ax-x}^{2}} \mathrm{dx}$.
c. Solve $(2 x \log x-x y) d y+2 y d x=0$.
(05 Marks)
(05 Marks)

## OR

8 a. Obtain the reduction formula of $\int \cos ^{n} x d x$.
(06 Marks)
b. Obtain the Orthogonal trajectory of the family of curves $r^{n} \cos n \theta=a^{n}$. Hence solve it.
(05 Marks)
c. A body originally at $80^{\circ} \mathrm{C}$ cools down at $60^{\circ} \mathrm{C}$ in 20 minutes, the temperature of the air being $40^{\circ} \mathrm{C}$. What will be the temperature of the body after 40 minutes from the original?(05 Marks)

## Module-5

9 a. Find the rank of the matrix

$$
A=\left[\begin{array}{cccc}
2 & 3 & -1 & -1 \\
1 & -1 & -2 & -4 \\
3 & 1 & 3 & -2 \\
6 & 3 & 0 & -7
\end{array}\right]
$$

(06 Marks)
b. Solve by Gauss - Jordan method the system of linear equations

$$
2 x+y+z=10,3 x+2 y+3 z=18, x+4 y+9 z=16
$$

(05 Marks)
c. Find the largest eigen value and the corresponding Eigen vector by power method given that $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right] .\left(\right.$ Use $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\mathrm{T}}$ as the initial vector). (Apply 4 iterations).
(05 Marks)

## OR

10 a. Use Gauss - Seidel method to solve the equations
(06 Marks)

$$
\begin{aligned}
20 x+y-2 x & =17 \\
3 x+20 y-z & =18
\end{aligned}
$$

$$
2 x-3 y+20 z=25 \text {. Carry out } 2 \text { iterations with } x_{0}=y_{0}=z_{0}=0 .
$$

b. Reduce the matrix $\mathrm{A}=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right]$ to the diagonal form.
(05 Marks)
c. Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$ to the canonical form.
(05 Marks)

## CBCS Scheme

USN


15CHE12/22

First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Engineering Chemistry

Time: 3 hrs.
Max. Marks: 80
Note: Answer FIVE full questions, choosing one full question from each module.

## Module-1

1 a. Describe the construction and working of Li-MnO2 battery.
(05 Marks)
b. Define battery. Explain the following battery characteristics:
(i) Electricity storage density.
(ii) Energy efficiency.
(iii) Cycle life.
(iv) Shelf life.
(05 Marks)
c. Define reference electrode. Explain the construction and working of Calomel electrode.
(06 Marks)

## OR

2 a. A concentration cell was constructed by immersing two silver electrodes in 0.02 M and 2 M $\mathrm{AgNO}_{3}$ solution. Write the cell representation, cell reactions and calculate the EMF of the cell at $25^{\circ} \mathrm{C}$.
(05 Marks)
b. Derive Nernst equation for single electrode potential.
(05 Marks)
c. Explain the construction and working of methanol oxygen fuel cell. Mention its application.
(06 Marks)

## Module-2

3 a. What is cathodic protection? Explain how a metal article is protected by sacrificial anodic method.
(05 Marks)
b. Explain the following factors affecting the rate of corrosion:
(i) Nature of the metal.
(ii) Ratio of anodic to cathodic areas.
(iii) pH .
(05 Marks)
c. Explain electroless plating of copper with relevant reaction.

## OR

4 a. What is metal finishing? Give the technological importance of metal finishing.
(05 Marks)
b. Explain the influence of the following factors on the nature of electrodeposit:
(i) pH .
(ii) Temperature.
(iii) Concentration of the metal ion.
(05 Marks)
c. Explain stress and differential metal corrosion with example.

## Module-3

5 a. Define cracking. Describe fluidized bed catalytic cracking.
(05 Marks)
b. What is biodiesel? Explain the synthesis and advantages of biodiesel.
c. Explain the production of solar grade silicon by union-carbide process.

## OR

6 a. Define photo voltaic cell. Explain the construction and working of photo voltaic cell.
b. Explain the purification of silicon by zone refining.
(06 Marks)
c. A 0.6 g of coal sample (carbon $90 \%, \mathrm{H}_{2} 3 \%$ and ash $7 \%$ ) was subjected to combustion in a bomb calorimeter. Mass of water taken in the calorimeter was 2000 g and the water equivalent of calorimeter was 400 g . The rise in temperature was $3^{\circ} \mathrm{C}$. Calculate the gross and net calorific value of the sample. Given, specific heat of water is $4.187 \mathrm{KJ} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$ and latent heat of steam is $2454 \mathrm{KJ} / \mathrm{kg}$.
(06 Marks)

## Module-4

7 a. Explain the free radical mechanism for addition polymerization by taking vinyl chloride as an example.
(06 Marks)
b. Explain the synthesis, properties and applications of epoxy resin,
(04 Marks)
c. What is glass transition temperature? Explain the following factors affecting glass transition temperature.
(i) Chain flexibility and
(ii) Intermolecular forces.
(06 Marks)

## OR

8 a. Explain structure - property relationship of polymers with respect to,
(i) Crystallinity
(ii) Tensile strength
(05 Marks)
b. What is polymerization? Explain addition and condensation polymerization with example.
(05 Marks)
c. What are polymer composite? Explain the synthesis, properties and application of Kevlar fibre.
(06 Marks)

## Module-5

9 a. Write a note on fullerenes. Mention its application.
(05 Marks)
b. Discuss the synthesis of nanomaterials by gas condensation method and chemical vapour condensation processes.
(05 Marks)
c. Discuss the experimental determination of Dissolved Oxygen (DO) of waste water. Mention the reactions involved in it.
(06 Marks)

## OR

10 a. What is desalination? Discuss the desalination of sea water by ion exchange process.
b. What is boiler feed water? Explain the scale and sludge formation in boilers.
c. Explain any three size dependent properties of nanomaterials.
$\square$

# First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Engineering Physics 

Time: 3 hrs .
Note: 1. Answer FIVE full questions, choosing one full question from each module.
2. Physical Constants: Velocity of light, $c=3 \times 10^{8} \mathrm{~ms}^{-1}$,

Planck's constant, $h=6.625 \times 10^{-34} \mathrm{~J} . S$,
Mass of electron, $m_{e}=9.1 \times 10^{-31} \mathrm{~kg}$,
Avogadro number, $N_{A}=6.02 \times 10^{26} / \mathrm{Kmol}$,
Boltzmann constant, $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$,
Charge of an electron, $e=1.602 \times 10^{-19} \mathrm{C}$

1 a. State Planck's radiation law. Show how Planck's law could be reduced to Wien's law and Rayleigh-Jeans law.
(07 Marks)
b. State Heisenberg's uncertainty principle and show that electron does not exist inside the nucleus by this principle.
(05 Marks)
c. Find deBroglie wavelength of a particle of mass $0.58 \mathrm{MeV} / \mathrm{c}^{2}$ has a kinetic energy 90 eV , where c is velocity of light.
(04 Marks)

## OR

2 a. Using Schrodinger's time independent wave equation obtain eigen values and eigen function for a particle in a one dimensional potential well of infinite height.
(07 Marks)
b. Define phase velocity and group velocity. Show that group velocity is equal to particle velocity.
(05 Marks)
c. The inherent uncertainty in the measurement of time spent by Iridium - 191 nuclei in the excited state is found to be $1.4 \times 10^{-10} \mathrm{~s}$. Estimate the uncertainty that results in its energy in eV in the excited state.
(04 Marks) superconductors.
(07 Marks)
b. Explain the failure of classical free electron theory.
(05 Marks)
c. For intrinsic Gallium Arsenide, the electric conductivity at room temperature is $10^{-6} \mathrm{ohm}^{-1} \mathrm{~m}^{-1}$. The electron and hole mobilities are respectively $0.85 \mathrm{~m}^{2} / \mathrm{V} . \mathrm{S}$ and $0.04 \mathrm{~m}^{2} / \mathrm{V} . \mathrm{S}$. Calculate the intrinsic carrier concentration at room temperature.
(04 Marks)

## OR

4 a. State law of mass action. Obtain an expression for electrical conductivity of semiconductors.
(07 Marks)
b. Explain the BCS theory of super conductivity. (05 Marks)
c. Calculate the probability of finding an electron at an energy level 0.02 eV above Fermi level at 200 K .
(04 Marks)

## Module-3

5 a. Describe construction and working of carbon dioxide laser with suitable diagrams. (07 Marks)
b. Obtain an expression for the numerical aperture of an optical fiber.
(05 Marks)
c. Find the ratio of population of two energy levels in a medium at thermal equilibrium, if the wavelength of light emitted at 291 K is 6928 A.
(04 Marks)

## OR

6 a. Describe the recording and reconstruction process in holography with the help of suitable diagrams.
(07 Marks)
b. Discuss point to point optical fiber communication system.
(05 Marks)
c. Calculate the numerical aperture and angle of acceptance for an optical fiber having refractive indices 1.563 and 1.498 for core and cladding respectively.
(04 Marks)

## Module-4

7 a. Describe briefly the seven crystal systems.
(07 Marks)
b. Describe with a neat diagram the crystal structure of diamond.
(05 Marks)
c. Draw the crystal planes $(102)(111)(011)$ and $(002)$ in a cubic crystal.
(04 Marks)

## OR

8 a. Define atomic packing factor. Calculate the atomic packing factor for sc, bcc and fcc structures.
(07 Marks)
b. Describe the construction and working of a Bragg's x-ray spectrometer. (05 Marks)
c. An x-ray beam of wavelength $0.7 \AA$ undergoes first order Bragg's reflection from the plane (302) of a cubic crystal at glancing angle $35^{\circ}$, calculate the lattice constant.
(04 Marks)

## Module-5

9 a. Explain Ball Milling method of synthesis of nano materials.
(06 Marks)
b. Describe hand operated Reddy shock tube with diagram.
c. Define shock waves. Mention its applications.

## OR

10 a. Explain the working of SEM with the help of a neat diagram.
(07 Marks)
b. Mention Rankine-Hugonit shock equations and expand the terms. (05 Marks)
c. Write any four applications of carbon nano tubes.

## CBCS SGHEmE

USN


First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Programming in C and Data Structures

Time: 3 hrs.
Max. Marks: 80
Note: Answer any FIVE full questions, choosing one full question from each module.

## Module- 1

1 a. Define an Algorithm. Write an algorithm to find the area and perimeter of a rectangle.
b. Write a General structure of C. Explain with an example.
(06 Marks)
c. Convert the following mathematical expression into C equivalent:
i) $\quad$ area $=\sqrt{s(s-a)(s-b)(s-c)}$
ii) $\mathrm{x}=\frac{-\mathrm{b}+\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
(04 Marks)
OR
2 a. Explain different types of input output functions in C with syntax and examples. ( 06 Marks)
b. Explain the following operators :
i) Unary
ii) Bitwise
iii) Conditional.
(06 Marks)
c. Draw the flowchart and write a C program to compute simple interest.
(04 Marks)

## Module-2

3 a. List all the conditional control statements used in C. Explain any two with syntax and example.
(06 Marks)
b. Write a C program that reads from the user an arithmetic operator and two operands perform the corresponding arithmetic operation on the operands using switch statement.
(06 Marks)
c. Implement a C program to find the reverse of an integer number and check whether it is palindrome or not.
(04 Marks)

## OR

4 a. What are unconditional control statements? Explain any two with example.
(06 Marks)
b. List the types of looping statements in C. Explain any two with syntax and example.
(06 Marks)
c. Develop a C program to read a year as an input and find whether it is Leap year or not.
(04 Marks)

## Module-3

5 a. What is Array? Explain the declaration and initialization of one dimensional and two dimensional Array with example.
(06 Marks)
b. Explain any four string manipulation library function with example.
(04 Marks)
c. Write a C program to implement string copy operation STRCOPY ( $\operatorname{str} 1, \operatorname{str} 2$ ) that copies a string strl to another string str2 without using Library function.
(06 Marks)

## OR

6 a. What is string? Write a C program that reads a sentence and prints the frequency of each of the vowels and total count of consonants.
(06 Marks)
b. What is a Function? Explain the type of functions based on parameters.
(06 Marks)
c. What is Recursion? Write a C program to compute polynomial co-efficient ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ using Recursion.
(04 Marks)

## Module-4

7 a. What is structure? Explain the C Syntax of structure declaration with example.
(04 Marks)
b. What is a FILE? Explain any five file manipulation functions with example.
(06 Marks)
c. What are actual and formal parameters? Explain various storage classes available in C.
(06 Marks)

## OR

8 a. Explain array of structure and structure within a structure with an example.
(06 Marks)
b. Write a C program to maintain a record of ' $n$ ' students details using an array of structures with four fields (roll no, name, marks and grade). Assume appropriate data type for each field. Print the marks of the student given the student name as input.
c. Explain various modes of FILE with example.

## Module-5

9 a. What is a pointer? Explain how the pointer variable is declared and initialized.
(04 Marks)
b. What is dynamic memory allocation? Explain different dynamic memory allocation functions in C .
(06 Marks)
c. Write a C program using pointers to compute the Sum, Mean and Standard deviation of all elements stored in an array of ' $n$ ' real numbers.

## OR

10 a. Explain the Array of pointers with example.
(04 Marks)
b. Explain any two pre-processor directives in C.
c. What is Stack? Explain operations on Stack.
d. What is a Queue? Explain its applications.


# First Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Elements of Civil Engineering and Engineering Mechanics 

Time: 3 hrs.
Max. Marks: 80
Note: Answer FIVE full questions, choosing one full question from each module.

1 a. Explain briefly the scope of the following civil engineering fields.
(04 Marks)
i) Hydraulics
ii) Transportation engineering.
b. Explain on what bases under which the dams are classified.
(05 Marks)
c. Replace the horizontal force of 600 N acting on the lever by an equivalent system consisting of a force and a couple at 0 as shown in fig.Q1(c).
(07 Marks)

Fig.Q1(c)


2 a. Give the comparison of Flexible and Rigid payements. Also give their advantages and limitations.
(04 Marks)
b. List the various systems of forces with their characteristics and an example for each, with a neat sketch.
(05 Marks)
c. A 100 N vertical force is applied to the end of a lever which is attached to a shaft as shown in fig.Q2(c). Determine i) The moment of force about 0 .
ii) The horizontal force applied at A which creates same moment about 0 .
iii) The smallest force applied at A which creates same moment about 0 .
(07 Marks)


## Module-2

3 a. State and prove Parallelogram law of forces.
b. Two forces acting on a body are 500 N and 1000 N as shown in fig. Q3(b). Determine the third force F such that the resultant of all the three forces is 1000 N directed at $45^{\circ}$ to the $x-$ axis.
(06 Marks)

Fig.Q3(b)


1 of 3
c. A truck is to be pulled along a straight road as shown in fig. Q3(c).
i) If the force applied along rope A is 5 kN inclined at $30^{\circ}$, what should be the force in the rope $B$, which is inclined at $20^{\circ}$, so that vehicle moves along the road.
ii) If force of 4 kN is applied in rope B at what angle rope B should be inclined so that the vehicle is pulled along the road.
(05 Marks)

Fig.Q3(c)


## OR

4 a. With a neat sketch, explain the basics of static friction and kinetic friction.
(03 Marks)
b. A block of mass 10 kgs placed on an inclined plane is subjected a force $F$ which is parallel to the plane. Taking inclination of the plane with respect to the horizontal as $30^{\circ}$ and coefficient of friction between the block and the plane is 0.24 . Determine the value of F for i) Impending motion of the block down the plane and ii) Impending motion of the block up the plane. Take acceleration due to gravity $g=9.81$.
(05 Marks)
c. Find the resultant of the force system acting on a body OABC as shown in fig.Q4(c). Also find the points where the resultant will cut the X and Y axis.
(08 Marks)


## Module-3

5 a. Explain the different types of supports and loads in the analysis of beams.
(06 Marks)
b. Find the forces in cables $A B$ and $C B$ shown in fig. $Q 5(b)$. The remaining two cables pass over frictionless pulleys E and F and support masses 1200 kg and 1000 kg respectively.
(10 Marks)

Fig.Q5(b)


OR
6 a. Define Equilibrant. Explain the conditions for equilibrium of coplanar concurrent force system and coplanar non concurrent force system.
(06 Marks)

$$
2 \text { of } 3
$$

b. Determine the reactions at the supports for the system shown in fig.Q6(b).
(10 Marks)

Fig.Q6(b)


## Module-4

7 a. Determine the Moment of inertia of a semi circle about centroid axis parallel to diameter by the method of integration.
(08 Marks)
b. Determine the centroid of the lamina as shown in fig. Q7(b).
(08 Marks)

Fig.Q7(b)


OR
8 a. Determine the centroid for sector of circle by the method of Integration.
(08 Marks)
b. Find the moment of Inertia of hatched area shown in fig.Q8(b) about the axis PQ. Also determine the radius of gyration.
(08 Marks)

Fig.Q8(b)


## Module-5

9 a. Derive all three basic equations of motion in Kinematics.
(06 Marks)
b. What is Super elevation and what is its necessity?
(04 Marks)
c. A horizontal bar on length 1.5 m rotates. It accelerates uniformly from 1200 rpm to 1500 rpm in an interval of 5 seconds. Find the linear velocity at the beginning and end of the interval. What are the normal and tangential components of the acceleration at the mid - point of the bar after 4 sec after the acceleration begins as shown in fig. Q9(c)?
(06 Marks)

Fig.Q9(c)


OR
10 a. Derive the equation to the path of the projectile.
(08 Marks)
b. A passenger and goods train are moving on a parallel track in same direction. The passenger train 250 m length is moving with a constant velocity of 72 kmph . At an instant its engine approaches the last compartment of the goods train. After 25 sec . the engine starts overtaking the engine of goods train. It takes 30 seconds more to completely overtake the goods train. Find the length and speed of goods train.
(08 Marks)


USN


15EME14/24

First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Elements of Mechanical Engineering
Time: 3 hrs.
Max. Marks: 80

## Note: Answer FIVE full questions, choosing <br> ONE full question from each module.

## Module-1

1 a. Define renewable and non-renewable energy resources and differentiate them. (06 Marks)
b. With the help of T-H diagram, explain the generation of steam at constant pressure.(10 Marks)

2 a Define: i) Dryness fraction ii) Sensible heat iii) Latent heat iv) Enthalpy of steam.
(04 Marks)
b. Draw a neat diagram and explain the construction and working of "Liquid flat plate collector" used for water heating applications.
(12 Marks)

## Module-2

3 a. What is steam turbine? Show the classifications of steam turbine. (06 Marks)
b. With a neat sketch, explain the working of Franci's turbine.
(10 Marks)

## OR

4 a. With the help of ' $\mathrm{P}-\mathrm{V}$ ' diagram, explain the operation of 4-S petrol engine. ( 08 Marks)
b. Following data are collected from a $4-\mathrm{S}$ single cylinder engine at full load. Bore $=200 \mathrm{~mm} ; \quad$ stroke $=280 \mathrm{~mm} ;$ speed $=300 \mathrm{rpm}$. Indicated mean effective pressure $=5.6$ bar, Torque on the brake drum $=250 \mathrm{~N}-\mathrm{m}$, fuel consumed $=4.2 \mathrm{~kg} /$ hour, and calorific value of fuel $=41,000 \mathrm{~kJ} / \mathrm{kg}$.
Determine :
i) Mechanical efficiency
ii) Indicated thermal efficiency, and
iii) Brake thermal efficiency.
(08 Marks)

## Module-3

5 a. With simple sketches, explain the following lathe operations:
i) Facing
ii) Cylindrical turning.
(06 Marks)
b. Define automation. Discuss the types of automation along with their merits and demerits.
(10 Marks)

## OR

6 a. Show the differences between drilling and boring.
(04 Marks)
b. Define robot. State the different types of robot configurations.
(04 Marks)
c. Draw a neat diagram to show the robot arm movement in Cartesian configuration and explain.
(08 Marks)

## Module-4

7 a. State the characteristics and applications of:i) Aluminium and its alloys ii) Copper and its alloys.
(08 Marks)
b. Differentiate between soldering and brazing.
c. State the advantages and disadvantages of welding over other types of joining processes.
(04 Marks)

## OR

8 a. List the advantages and limitations of composites.
(08 Marks)
b. With a neat diagram, explain the Oxy-acetylene welding process.
(08 Marks)

## Module-5

9 a. Define refrigeration. State the applications of refrigeration.
(04 Marks)
b. Define the following refrigeration terms :
i) Refrigerant
ii) ton of refrigeration
iii) COP
iv) relative COP
(04 Marks)
c. With the help of a flow diagram, explain the functioning of "Vapour compression refrigeration cycle".

## OR

10 a. What is refrigerant? State the desired properties of refrigerant.
b. Draw a neat diagram of a room air conditioner and explain.
(10 Marks)

USN


15ELE15/25

First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Basic Electrical Engineering

Time: 3 hrs.

Max. Marks: 80

Note: Answer FIVE full questions, choosing one full question from each module.

## Module-1

1 a. Define KCL and KVL with an example.
(05 Marks)
b. From the given below circuit, find the current through $6 \Omega$ resistor. [Fig.Q.1(b)].
(05 Marks)

Fig.Q.1(b)

c. A coil of 1000 turns is wound on a ring of silicon steel, having mean diameter of 10 cm and relative permeability 1200 . Its cross sectional area is $12 \mathrm{sq} . \mathrm{cm}$. When a current of 5 A flows through the coil, find:
i) Flux in the core
ii) Inductance of the coil
iii) Induced emf if the flux falls to zero in 20 msec .
(06 Marks)

## OR

2 a. Derive an expression for dynamically induced emf with a neat diagram.
(05 Marks)
b. Two coupled coils of self inductance 0.8 H and 0.2 H , have a coefficient of coupling 0.9 . Find the mutual inductance and turns ratio.
(05 Marks)
c. A $10 \Omega$ resistance is connected in series with a parallel combination of $15 \Omega$ and $20 \Omega$ resistors. The circuit is applied with V volts. The power taken by the circuit is 150 watts. Find the total current through the circuit and power consumed in all the resistors. ( 06 Marks)

## Module-2

3 a. With a neat sketch, explain the construction of various parts of a DC machine. ( 05 Marks)
b. A 4-pole, lap connected DC generator has 600 armature conductors and runs at 1200 rpm . If the flux per pole is 0.06 wb , calculate the emf induced. Also find the speed at which it should be driven to produce same emf when wave connected.
(05 Marks)
c. With a neat figure, explain the construction and working principle of dynamometer type wattmeter.
(06 Marks)

## OR

4 a. Explain the construction and principle of operation of induction type single phase energy meter.
(05 Marks)
b. 4-pole, 220 V , lap connected DC shunt motor has 36 slots, each slot containing 16 conductors. It draws a current of 40 A from supply. The field resistance and armature resistances are $110 \Omega$ and $0.1 \Omega$ respectively. The motor develops an output power of 6 kW . The flux per pole in 40 m wb. Calculate: i) Speed; ii) Torque developed by armature; iii) Shaft torque.
(05 Marks)
c. Derive emf equation for DC generator.
(06 Marks)

## Module-3

5 a. Derive an expression for power in pure capacitor circuit and draw voltage, current and power waveforms.
(05 Marks)
b. A series circuit with a resistor of $100 \Omega$, capacitor of $25 \mu \mathrm{~F}$ and inductance of 0.15 H is connected across $220 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate impedance, current, power and p.f. of circuit.
c. With a neat sketch, explain 3-way control of lamp.
(05 Marks)
(06 Marks)

## OR

6 a. Define earthing. Explain any one type of earthing with a neat diagram.
(05 Marks)
b. Two impedances $(150-157 \mathrm{j}) \Omega$ and $(100+110 \mathrm{j}) \Omega$ are connected in parallel across 200 V , 50 Hz supply. Find branch currents, total current and total power consumed in the circuit. Draw the phasor diagram.
c. Define power factor and mention its practical importance.

## Module-4

7 a. Mention the advantages of three phase system over single phase system.
(05 Marks)
(06 Marks)
b. Three coils each having resistance of $10 \Omega$ and inductance of 0.02 H are connected in star across $440 \mathrm{~V}, 50 \mathrm{~Hz}, 3 \phi$ supply. Calculate the line current and total power consumed.
(05 Marks)
c. A 6 -pole, $3 \phi$, star connected alternator has an armature with 90 slots and 12 conductors per slot and rotates at 1000 rpm . The flux per pole is 0.5 wb . Calculate emf generated, if the winding factor is 0.97 and full pitched.
(06 Marks)

## OR

8 a. With a neat sketch, explain the constructional details of alternator.
(05 Marks)
b. A $3 \phi, 16$ pole alternator has a star connected winding with 144 slots and 10 conductor per slots. The flux per pole is 30 mwb . Find the phase and line voltages, if the speed is 375 rpm .
(05 Marks)
c. A $3 \phi, 400 \mathrm{~V}$, motor takes an input of 40 kW at 0.45 p.f. lag. Find the reading of each of the two single phase wattmeters connected to measure the input.
(06 Marks)

## Module-5

9 a. Explain the working principle of single phase transformer.
(05 Marks)
b. Find the efficiency of 150 kVA , single phase transformer at i) Full load upf; ii) $50 \%$ of full load at 0.8 p.f. If the copper loss at full load is 1600 watts and iron loss is 1400 watts.
(05 Marks)
c. A $3 \phi, 4$-pole, $400 \mathrm{~V}, 50 \mathrm{~Hz}$ induction motor runs with a slip of $4 \%$, find rotor speed and frequency.
(06 Marks)

## OR

10 a. Explain the working principle of an $3 \phi$ induction motor with a neat sketch.
(05 Marks)
b. A 10 pole induction motor supplied by a 6 pole alternator, which is driven at 1200 rpm . If the motor runs at slip of $3 \%$, what is its speed?
(05 Marks)
c. A single phase transformer has 400 primary and 1000 secondary turns. The net cross sectional area of core is $60 \mathrm{~cm}^{2}$. The primary winding is connected to $500 \mathrm{~V}, 50 \mathrm{~Hz}$. Find: i) Peak value of core flux density; ii) Emf induced in the secondary winding.
(06 Marks)

## GBCS Scheme

USN


15ELN15/25

First/Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017
Basic Electronics
Time: 3 hrs.

Note: Answer FIVE full questions, choosing one full question from each module.

## Module-1

1 a. Define the following diode parameters :
i) Knee voltage
ii) Maximum forward current
iii) Peak inverse voltage
iv) Reverse breakdown voltage
v) Maximum power rating.
(06 Marks)
b. With neat circuit diagram and waveform explain the working of Full wave Bridge Rectifier.
c. Draw common emitter circuit. Sketch input and output characteristics. Also explain operating regions by indicating them on characteristic curve.
(05 Marks)

## OR

2 a. Write a note on voltage regulator circuit.
(05 Marks)
b. Derive the relationship between $\alpha$ and $\beta$. Also calculate the $\alpha$ value and $\beta$ value of a transistor if $I_{B}=100 \mu \mathrm{~A}$ and $\mathrm{I}_{\mathrm{c}}=2 \mathrm{~mA}$.
(04 Marks)
c. With a neat diagram, explain the output characteristics of a transistor in common base configuration.
(07 Marks)

## Module-2

3 a. What is DC load line? Explain with neat circuit the operation of voltage divider bias circuit.
(05 Marks)
b. What is op-amp? List the characteristics of an ideal op-amp.
(06 Marks)
c. For the circuit shown in Fig Q3(c). compute
i) Three transistor currents
ii) Voltage drop across $\mathrm{R}_{\mathrm{C}}$ and $\mathrm{R}_{\mathrm{B}}$.
(05 Marks)


Fig Q3(b)

4 a. Explain how op-amp can be used as
i) An integrator
ii) Differentiator
iii) Voltage follower.
(06 Marks)
b. With neat circuit diagram, explain base biased method with necessary equations. ( $\mathbf{0 5}$ Marks)
c. Find the output of the following op-amp circuit.
(05 Marks)


Fig Q4(c)

## Module-3

5 a. Convert $(1101101)_{2}=(\quad)_{10}$ and $(96)_{10}=()_{2}$.
(04 Marks)
b. Convert $(\text { FA876 })_{16}=(\quad)_{8}$ and $(237)_{8}=(\quad)_{16}$.
(04 Marks)
c. Design Full adder circuit.
(08 Marks)
OR
6 a. State and prove De Morgan's theorem.
(05 Marks)
b. What are Universal gates? Realize AND, OR Gates using Universal gates.
(05 Marks)
c. Subtract ( 19$)_{10}$ from $(15)_{10}$ using 1 s and 2 s compliment methods.

## Module-4

7 a. Write a note on NOR gate latch.
(05 Marks)
b. Explain the working of clocked RS flip flop using NAND gates.
(06 Marks)
c. Define microcontrollers. Write their important applications.

## OR

8 a. Explain the architecture of 8051 micro controller.
(08 Marks)
b. Mention the difference between latch and Flip flop.
(02 Marks)
c. Write a note on interfacing of 8051 microcontroller with stepper motor.
(06 Marks)

## Module-5

9 a. Explain the block diagram of communication system.
(05 Marks)
b. Define Amplitude modulation. Derive mathematical expression for the same. Draw waveforms.
c. Explain the construction and the principle of operation of LVDT.

## OR

10 a. List the differences between Amplitude modulation and frequency modulation.
b. Explain frequency modulation with neat waveforms.
c. A carrier of 10 V peak and frequency 100 KHz is amplitude modulated by a sine wave of 4 V peak and frequency 1000 Hz . Determine the modulation index for the modulated wave and draw the amplitude spectrum.
(06 Marks)

## GBCS Scheme

USN


## Second Semester B.E. Degree Examination, Dec.2016/Jan. 2017 Engineering Mathematics - II

Time: 3 hrs .
Max. Marks: 80

## Note: Answer FIVE full questions, choosing one full question from each module.

Module- 1
1 a. Solve (D-2) $y=8\left(e^{2 x}+x+x^{2}\right)$ by inverse differential operator method.
(06 Marks)
b. Solve $\left(D^{2}-4 D+3\right) y=e^{x} \cos 2 x$, by inverse differential operator method.
(05 Marks)
(05 Marks)

## OR

2 a. Solve $\left(D^{2}-1\right) y=x \sin 3 x$ by inverse differential operator method.
(06 Marks)
b. Solve $\left(D^{3}-6 D^{2}+11 D-6\right) y=e^{2 x}$ by inverse differential operator method.
(05 Marks)
c. Solve $\left(D^{2}+2 D+4\right) y=2 x^{2}+3 e^{-x}$ by the method of undetermined coefficient.

## Module-2

3 a. Solve $x^{3} y^{\prime \prime \prime}+3 x^{2} y^{\prime \prime}+x y^{\prime}+8 y=65 \overline{\cos (\log x)}$.
(06 Marks)
b. Solve $x y p^{2}+p\left(3 x^{2}-2 y^{2}\right)-6 x y=0$.
(05 Marks)
c. Solve the equation $y^{2}(y-x p)=x^{4} p^{2}$ by reducing into Clairaut's form, taking the substitution $x=\frac{1}{x}$ and $y=\frac{1}{y}$.

## OR

4 a. Solve $(2 x+3)^{2} y^{\prime \prime}-(2 x+3) y^{\prime}-12 y=6 x$.
(06 Marks)
b. Solve $p^{2}+4 x^{5} p-12 x^{4} y=0$. (05 Marks)
c. Solve $p^{3}-4 x y p+8 y^{2}=0$.
(05 Marks)

## Module-3

5 a. Obtain the partial differential equation by eliminating the arbitrary function. $Z=f(x+a t)+g(x-a t)$.
(06 Marks)
b. Solve $\frac{\partial^{2} z}{\partial x \partial y}=\sin x \sin y$, for which $\frac{\partial z}{\partial y}=-2 \sin y$, when $x=0$ and $z=0$, when $y$ is an odd multiple of $\pi / 2$
(05 Marks)
c. Find the solution of the wave equation $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$ by the method of separation of variables.
(05 Marks)

## OR

6 a. Obtain the partial differential equation by eliminating the arbitrary function

$$
\left(x+m y+n z=\phi\left(x^{2}+y^{2}+z^{2}\right)\right.
$$

(06 Marks)
b. Solve $\frac{\partial^{2} z}{\partial y^{2}}=z$, given that, when $y=0, z=e^{x}$ and $\frac{\partial z}{\partial y}=e^{-x}$.
(05 Marks)
c. Derive one dimensional heat equation $\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\mathrm{c}^{2} \frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}$.
(05 Marks)

## Module-4

7 a. Evaluate $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z}(x+y+z) d y d x d z$.
(06 Marks)
b. Evaluate $\int_{0}^{4 \mathrm{a}} \int_{\frac{x^{2}}{4 \mathrm{a}}}^{2 \sqrt{\mathrm{ax}}} x y d y d x$ by changing the order of integration.
(05 Marks)
c. Evaluate $\int_{0}^{4} \mathrm{x}^{3 / 2}(4-\mathrm{x})^{5 / 2} \mathrm{dx}$ by using Beta and Gamma function.
(05 Marks)

## OR

8 a. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} \mathrm{e}^{-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)} \mathrm{dx}$ dy by changing to polar co-ordinates. Hence show that

$$
\int_{0}^{\infty} \mathrm{e}^{-\mathrm{x}^{2}} \mathrm{dx}=\sqrt{\pi / 2} .
$$

(06 Marks)
b. Find by double integration, the area lying inside the circle $r=a \sin \theta$ and outside the cardioid $r=a(1-\cos \theta)$.
(05 Marks)
c. Obtain the relation between beta and gamma function in the form

$$
\begin{equation*}
\beta(\mathrm{m}, \mathrm{n})=\frac{\Gamma(\mathrm{m}) \Gamma(\mathrm{n})}{\Gamma(\mathrm{m}+\mathrm{n})} . \tag{05Marks}
\end{equation*}
$$

## Module-5

9 a. Find i) $\mathrm{L}\left\{\mathrm{e}^{-3 t}(2 \cos 5 \mathrm{t}-3 \sin 5 \mathrm{t})\right\}$
ii) $L\left\{\frac{\cos a t-\cos b t}{t}\right\}$.
(06 Marks)
b. If a periodic function of period 2 a is defined by

$$
\mathrm{f}(\mathrm{t})=\left\{\begin{array}{ccc}
\mathrm{t} & \text { if } & 0 \leq \mathrm{t} \leq \mathrm{a} \\
2 \mathrm{a}-\mathrm{t} & \text { if } & \mathrm{a} \leq \mathrm{t} \leq 2 \mathrm{a}
\end{array}\right\} \text { then show that } \mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\frac{1}{\mathrm{~s}^{2}} \tan \mathrm{~h}\left(\frac{\mathrm{as}}{2}\right) .
$$

(05 Marks)
c. Solve the equation by Laplace transform method. $y^{\prime \prime \prime}+2 y^{\prime \prime}-y^{\prime}-2 y=0$. Given

$$
\begin{equation*}
y(0)=y^{\prime}(0)=0, y^{\prime \prime}(0)=6 \tag{05Marks}
\end{equation*}
$$

## OR

10 a. Find $L^{-1}\left\{\frac{s+3}{s^{2}-4 s+13}\right\}$.
(06 Marks)
b. Find $L^{-1}\left\{\frac{\mathrm{~s}}{\left(\mathrm{~s}^{2}+\mathrm{a}^{2}\right)^{2}}\right\}$ by using Convolution theorem.
(05 Marks)
c. Express $f(t)=\left\{\begin{array}{cc}\sin t, & 0 \leq t<\pi \\ \sin 2 t, & \pi \leq t<2 \pi \\ \sin 3 t, & t \geq 2 \pi\end{array} \quad\right.$ in terms of unit step function and hence find its

Laplace transforms.
(05 Marks)

## USN

$\square$
First/Second Semester B.E Degree Examination, Dec.2016/Jan. 2017

## Constitution of India, Professional Ethics \& Human Rights

 (COMMON TO ALL BRANCHES)Time: 2 hrs.]
[Max. Marks: 40

## INSTRUCTIONS TO THE CANDIDATES

1. Answer all the forty questions, each question carries one mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. One of the objectives of the constitution is to achieve
a) law and order
b) justice
c) political stability
d) social control
7. State is authorized to make special provision for $\qquad$ .
a) women and children
b) men only
c) men and women
d) none of these
8. Freedom of speech and expression means right to express one's own opinion only by
$\qquad$ .
a) words by mouth
b) writing and printing
c) both (a) and (b)
d) none of these
9. Article 21 protects
a) life only
b) liberty only
c) life and personal liberty
d) none of these
10. Telephone tapping is violation of
a) right to freedom of speech and expression
b) right to life and personal liberty
c) right to carry on any profession
d) right to equality
11. Right to education is a $\qquad$ .
a) fundamental right
b) ordinary legal right
c) not a right
d) both (a) and (b)
12. Minorities have right to $\qquad$ .
a) establish and administer educational institutions
b) only to establish educational institutions
c) carry out profession or business
d) none of these
13. Mandamus means
a) request
b) command
c) permission
d) all of these
14. The underlying objective of the directive principles is to achieve $\qquad$ .
a) police state
b) secular state
c) welfare state
d) none of these
15. 'Equal pay for equal work' is an accomplishment of $\qquad$ .
a) right to freedom
b) right to religion
c) right to constitutional remedies
d) right to equality
16. Sexual harassment of working women is violation of
a) fundamental duty
b) directive principles of state policy
c) fundamental right
d) rule of law
17. State should protect every monument or place or object declared to be of $\qquad$ .
a) state importance
b) national importance
c) international importance
d) local importance
18. In Child Labour Abolation case the supreme court has held that the children below the age of $\qquad$ cannot be employed in any hazardous industry.
a) 16 years
b) 18 years
c) 21 years
d) 14 years
19. Name the group, which is created for the election of the president
a) electoral college
b) elected college
c) electoral commission
d) none of these
20. Who is the supreme commander of the defense force of India?
a) Prime minister
b) The president
c) Chief justice of S.C.
d) Parliament
21. Who can allot and transfer the portfolios to the ministers?
a) The prime minister
b) The president
c) Parliament
d) Cabinet
22. What kind of elections takes place to Rajya Sabha?
a) direct elections
b) indirect election
c) by elections
d) mid-term election
23. Annual statement of income and expenditure of the government is known as
a) agenda
b) catalogue
c) calendar
d) budget
24. The Governor of the state is responsible for his actions to
a) The state legislative assembly
b) The president
c) The prime minister
d) The chief minister
25. This is not the power of the chief minister
a) formation of government
b) control over ministers
c) chief advisor to the governor
d) control over state judiciary
26. The number of ministers including the chief minister shall not exceed $\qquad$ of the total number of MLAs.
a) $25 \%$
b) $30 \%$
c) $15 \%$
d) $20 \%$
27. The supreme court has the power to
a) create high courts
b) create the whole judicial system
c) supervise and control the high court
d) none of these
28. Article 243(D) and 243(T) provides for reservation of seats for SC's and ST's in $\qquad$ .
a) Lok Sabha
b) Rajya Sabha
c) Vidhan Sabha
d) Panchayat Raj
29. The term backward class implies backwardness
a) socially and educationally
b) culturally
c) economically
d) none of these
30. Proclamation of emergency must be laid before
a) both the houses of the parliament
b) either house of parliament
c) before the supreme court
d) none of these
31. President can impose state emergency when he receives a report from the $\qquad$ .
a) chief minister
b) governor
c) chief justice
d) attorney general
32. Every citizen of the age of $\qquad$ years is eligible to vote in an election.
a) 16 years
b) 21 years
c) 22 years
d) 18 years
33. Election disputes can be adjudicated only by $\qquad$ .
a) high court
b) criminal court
c) civil court
d) election commission
34. Which among the following were given supremacy over fundamental rights?
a) fundamental duties
b) citizenship
c) DPSP
d) none of these
35. What do you mean by 'minimalist approach'?
a) sticking on maximum acceptable standards
b) sticking on minimum acceptable standards
c) sticking on full acceptable standards
d) none of these
36. In 'good work views’ focus is given on $\qquad$ .
a) concept of skillful work
b) concept of legal work
c) concept of logical work
d) the concept of responsibility beyond the legal and moral and call of duty
37. What is one of the hindrances to the responsibility?
a) self-deception
b) self-assessment
c) self-realization
d) negligence
38. Telling truth when should not is $\qquad$ .
a) honesty
b) Dharma of an engineer
c) misusing of the truth
d) business principle
39. Integrity in engineering means $\qquad$ .
a) quality of being honest and fair
b) quality of service to the customer
c) quality of self-esteemed behavior
d) quality of self-aggrandizement
40. Plagiarism means $\qquad$ .
a) Use of intellectual property of others
b) Research work
c) Copying information from other sources
d) None of these
41. Copyright is for $\qquad$ .
a) 15 years after his or her death
b) 20 years after his or her death
c) 50 years after his or her death
d) 100 years after his or her death
42. The formulae of a soft drink is an example of
a) trade secret
b) patent
c) copy right
d) trade mark
43. When did the Human Rights Act come into effect?
a) 1951
b) 1989
c) 1993
d) 1995
44. "Human Rights" means the rights relating to
a) life
b) liberty
c) equality
d) all of these
45. Conflict of interest may be
a) potential
b) false
c) created
d) imaginary

## GDGM SGREME

USN


Question Paper Version : A

First/Second Semester B.E Degree Examination, Dec.2016/Jan. 2017

## Environmental Studies

## (COMMON TO ALL BRANCHES)

Time: 2 hrs.]
[Max. Marks: 40

## INSTRUCTIONS TO THE CANDIDATES

1. Answer all the forty questions, each question carries ONE mark.
2. Use only Black ball point pen for writing / darkening the circles.
3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet.
4. Darkening two circles for the same question makes the answer invalid.
5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.
6. Which of the following conceptual spheres of the environmental is having the least storage capacity for matter?
a) Atmosphere
b) Lithosphere
c) Hydrosphere
d) Biosphere
7. Biosphere is,
a) The solid shell of inorganic materials on the surface of the earth.
b) The thin shell of organic matter on the surface of each comprising of all the living things.
c) The sphere which occupies the maximum volume of all the spheres.
d) All of the above.
8. The earth's atmosphere is an envelope of gases present upto a height of about $\qquad$ kms.
a) 10
b) 200
c) 1000
d) 2000
9. Primary consumer is,
a) Herbivores
b) Carnivores
c) Macro consumers
d) Omnivores
10. World environmental day is on,
a) $5^{\text {th }}$ May
b) $5^{\text {th }}$ June
c) $18^{\text {th }}$ July
d) $16^{\text {th }}$ August
11. Green revolution is,
a) Crop variety improvements
b) Increased use of fertilizers
c) Expansion of irrigation
d) All of these
12. Environmental is the life support system that includes,
a) Air
b) Water
c) Land
d) All of these
13. The largest reservoir of nitrogen in our planet is,
a) Oceans
b) Atmosphere
c) Biosphere
d) Fossil fuels
14. Land conversion through burning of biomass releases,
a) $\mathrm{O}_{2}$
b) CO
c) $\mathrm{N}_{2}$
d) $\mathrm{SO}_{2}$
15. The movement of carbon between $\qquad$ is called carbon cycle,
a) Atmosphere and biosphere
b) Atmosphere and hydrosphere
c) Geosphere and atmosphere
d) Biosphere, atmosphere, hydrosphere and geosphere
16. The ground water depends on,
a) Amount of rain fall
b) Geological formations
c) Run off
d) All of these
17. The important three minerals mined into the maximum extent are,
a) Coal, petroleum and mercury
b) Coal, Petroleum and Iron
c) Petroleum, Radium and Xenon
d) Helium, Xenon and Coal
18. Respiration and photosynthesis are the keywords related to,
a) Nitrogen cycle
b) Sulphur cycle
c) Carbon cycle
d) Hydrological cycle.
19. Mining means,
a) To conserve and preserve minerals
b) To check pollutions due to mineral resources
c) To extract minerals and ones
d) None of these
20. The most important fuel used by nuclear power plant is,
a) V-235
b) V-238
c) V-245
d) $\mathrm{V}-248$
21. The pH value of the acid rain water is,
a) 5.7
b) 7.0
c) 8.5
d) 7.5
22. Which of the following is not a Green house gas?
a) Hydro chloroflourocarbons
b) Methane
c) $\mathrm{CO}_{2}$
d) $\mathrm{SO}_{2}$
23. E.I.A can be expanded as,
a) Environment and Industrial Act
b) Environment and impact activities
c) Environment Impact Assessment
d) Environment Important Activity
24. The environmental (protection) act 1986 deals with:
a) Water
b) Air
c) Soil
d) All of these
25. The first of the major environmental protection act to be promulgated in India was:
a) The wild life protection act
b) The air act
c) The noise pollution act
d) None of these
26. The meaning of global warming is,
a) Increase in the temperature of climate
b) A planet hotter than earth
c) Solar radiation
d) Cooling effect
27. Biogas is produced by,
a) Microbial activity
b) Harvesting crop
c) Both (a) and (b)
d) None of these
28. Biomass consists of,
a) Lignin
b) Hemi cellulose
c) Cellulose
d) All of these
29. Petroleum based vehicles emit traces of,
a) CO and $\mathrm{NO}_{x}$
b) SPM
c) Aldehydes
d) $\mathrm{CH}_{4}$
30. Urbanization is,
a) Local environmental issue
b) National environmental issue
c) Both (a) and (b)
d) Not at all an issue
31. Noise pollution limits in industrial area,
a) 45 dB
b) 80 dB
c) 65 dB
d) 90 dB
32. Ozone layers absorbs,
a) UV rays
b) Infrared rays
c) Cosmic rays
d) CO
33. Water logging is a phenomenon in which,
a) Crop patterns are related
b) Plant nutrients
c) Erosion of soil
d) None of these
34. The natural nitrogen cycle is upset due to,
a) Burning of fossil fuel
b) Modern agricultural practice of releasing excess fertilization.
c) Global warming
d) Biogas production
35. Which of the following are natural sources of air pollution?
a) Volcanic eruption
b) Solar flair
c) Earthquake
d) All of these
36. Air pollution from automobiles can be controlled by fitting,
a) Electrostatic precipitator
b) Wet scrubber
c) Catalytic converter
d) All of these
37. Both power and manure provided by,
a) Nuclear plants
b) Thermal plants
c) Biogas plants
d) Hydroelectric plants
38. BOD means,
a) Biochemical oxygen demand
b) Chemical oxygen demand
c) Biophysical oxygen demand
d) All of these
39. Deforestation can,
a) Increase the rain fall
b) Increase soil fertility
c) Introduce silt in the rivers
d) None of these
40. Organic farming is,
a) Farming without using pesticides and chemical fertilizers
b) Enhances biodiversity.
c) Promotes soil biological activity.
d) All of these.
41. Chloro Fluro Carbon's (CFC) are,
a) Non toxic
b) Non flammable
c) Non carcinogenic
d) All of these
42. Which of the following statement is true?
a) Green plants are self nourishing
b) Producers depends on consumers
c) Biotic components includes all non-living components
d) Herbivores depend on Carnivores.
43. Major purpose of most of the Dams around the world is,
a) Power generation
b) Drinking water supply
c) Flood control
d) Irrigation.
44. Major causes of deforestation are,
a) Shifting cultivation
b) Fuel requirements
c) Raw materials for industries
d) All of these
45. $\operatorname{Smog}$ is,
a) A natural phenomenon
b) Combination of smoke and fog
c) Colorless
d) All of these

- A4 -

